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INTRODUCTION

The propulsion system for tilt nacelle V/S1OL aircraft must operate
efficiently and smoothly over a wide range of flight speeds, engine weight
flows and incidence angles. For example, during the approach to landing
(fig. 1), the nacelles rotate from the normal horizomtal position to am
angle of 99°. Rotating the nacelles to these high sngles results in cox-
respondingly high angles of flow incidence at the inlets.

1f the fan is to perform satisfactorily, the inlet must meet the re-
quirements listed in figure 2. For high thrust and engine efficiency, the
inlet pressure recovery must be high and the inlet flow distortion low.
These two requirements are usually met simultaneously. For the fan blade
stresses to be low, the distortion must be low. For acceptable airplane
handling qualities and control, any variations in the pressure recovery
and distortion that do occur must be smooth, that is, not discontinuous.
Generally, an inlet with attached flow will satisfy the above requirements.
There are however some levels and degrees of separation that may be accept-
able for certain engines.

SYMBOLS
Blg. P.R. Blowing pressure ratio, Pp/Poo
CR inlet area contraction ratio (RhL/Rt)z
Df fan face diameter 50.8 cm (20.00 in.)
DhL hilite diameter 53.87 cm (21.208 in.)
L inlet axial length 30.63 cm (12.059 in.)
Mt inlet throat Mach number
N fan rotational speed
Pp blowing plenum pressure
P free stream total pressure
§2/Pw fan face area weighted total pressure recovery

=
t

local throat radius, cm (1n.)



<_£EE£?TEEE£9 fan face area weighted total pressure distortion
2

Vt one dimensional throat velocity

- free stream velocity

e angle-of-attack, deg

circumferential angle, deg (=0O in windward plane)
3 fan blade vibratory stress

maximum allcwable fan blade vibratory stress

max 2.4x108 N/m?2 p-p (3.5<10% 1b/in? p-p)

APPARATUS

(Thick lips, scarf inlets, centerbody locationm, etc.). These concepts
are discussed in the references.

This paper presents the experimental results of a Grumman Aerospace

The goal was to ascertain the inlet/fan performance over the low
speed inlet operating envelope (0 SV, <64 m/sec (125 knots),
0° < a < 120°). The model rotates in the horizontal plane about the
vertical support post. This post also provides the passage for the high
pressure turbine drive air. (The windward plane is labeled in the slide.)

The blowing air supply line comes from the top of the tunnel and is
mounted with a swivel joint. A portion of the adajcent vertical wall was
removed to allow the fan and turbine exhaust to pass through during high
angles of attack.

Figure 4 shows the inlet details and instrumentation. The inlet is
an asymmetric design with a windward-side contraction rati - of 1.69 and
a leeward-side contraction ratio of 1.32. The contraction ratio is de-
fined as (RhL/Rt)z.

The blowing slot was located slightly downstream of the inlet throat
and extends 120°, from -60° to +60° about the windward plane. The slot
height was ~0.012 inches. The blowing direction was tangent to the inlet
surface. The diffuser wall angle was 12°, raximum.

The fan face diameter was 30.48 cm (20 in.) and the inlet length
ratio (L/Dg¢) was 0.603. Rakes were located ahead of the fan. These rakes

Separation.



Data were taken from 0 <V, < 64 m/sec (125 knots), 00 <a< 120°
and blowing pressure ratios from 0.99 < Pp/Po £ 2.00.

RESULTS AND DISCUSSION

What can a small amount of blowing do for the inlet angle-of-attack
. (o) operating range?
Figure 5 answers this question. Shown is the inlet angle-of-attack
plotted against the throat-to-freestream velocity ratio for both the non-
. blowing and blowing inlets. The blowing inlet had a blowing pressure
- ratio (P /Py) of 1.40 (5% of inlet mass flow). Separation-free (attached)
flow is to the right of each curve.
' With no blowing, at a velocity ratio of 2.5, the maximum « of
separation-free flow is ~61°. However, with blowing the maximum angle-of-
attack is 110°. This result applies to the low speed, 31 m/sec (60 knots).
This is a tremendous improvement in the separation-free operation of the
inlet.
The blowing curve includes points for four freestream velocities.
The data tends ;o correlate with the throat-to-freestream velocity ratio

throttle. Iﬁ ﬁﬁit particular e, the 1
been compared to._the fan,apezating.tange nts
full-throttle (1007 fan speed) and the left hand curve is psrt-throttle
(407 fan speed). These curves represent a range of freestream velocities.
In general, with blowing the inlet would operate in the attached flow re-
gion over the operating range from part to full throttle.

‘“Typical attachment/separstion occurring with blowiay is shown in fig- -
ure 7. Total pressure recovery and distortion at the fan face is plotted
versus the one-dimensional inlet throat Mach number. The data is shown
for V, of 41 m/sec (80 knots) and o of 75°. Attachment occurs with
increasing Mg (rpm). Separation occurs with decreasing Mg (rpm). The

N solid symbols denote separated flow.

- : With decreasing throat Mach number, the flow separatiom occurred at
: a significantly lower throat Mach number than it attached with increasing
throat Mach number. This is a stable hysteresis which was typical with

= blowing. However, the baseline (nonblowing) inlet had negligible hyster-
esis.
The fan face distortion also exhibited a stable hysteresis. As throat

_ Mach number (rpm) increased the fan face distortion increased (responding
. : to separated flow) and decreased when the flow attached. However, with

~ decreasing throat Mact number (rpm) the flow remains attached to a lower
-, 7 throat Mach number with a corresponding lower fan face distortionm.

) For a particular set of inlet condition (Ve, @ = const. with rpm

- varying from maximum to minimum) the following occurs:

. : (a) From maximum rpm to (rpm) separation, the pressure recovery in-
¥ creases and distortion decreases.
(b) From (rpm) separation to rpm where separated flow occurs over a
small part of the fan face, the pressure recovery decreases and distortion
increases.

e
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(c) When the inlet is completely separated both pressure recovery and
distortion decrease.

It is interesting to note, that when attachment or separation occurs
there is an abrupt change in the pressure recovery and distortion. Data
pertaining to the separation point (decreasing rpm) will be the topic of
the remaining discussion.

Figure 8 shows the effect of blowing pressure ratio on inlet separa-
tion. This figure shows: the total pressure recovery and fan face distor-
tion versus throat Mach number M) at Vo = 41 m/sec (80 knots) and
2 = 75°, the same condition as the previous figure. Data for the baseline
(nonblowing) inlet are given by the symbols. Solid symbols denotes sepa-
rated flow. The baseline (nonblowing) inlet was separated from a throat
Mach number of 0.15 to 0.375. There is also a region from 0.250 to 0.325
where the inlet flow and fan rpm are unstable.

For the blowing inlet, blowing pressure ratios of 1.2, 1.4 and 1.7
are shown. The blowing pressure ratio is defined as Pp/Pw. A large in-
cremental gain in the attached flow throat Mach number range occurred with
a blowing pressure ratio of 1.2 (maximum of 4.3% inlet flow). However,
the higher blowing pressure ratios do modestly increase the level of re-
covery and the range of attached flow. S S ~ .

As a result of the separation point cccurring at lower throst Mach
number the region of smooth thrust modulation is increased with blowing.
Blowing also resulted in a reduction in fan face distortion which is
analogous to the pressure recovery increase.

Figure 9 shows the effect of blowing on fan blade stresses for
Vo = 64 m/sec (125 knots), x = 55°. The first, flatwise bending mode
stress signature is shown as a percentage of the maximum allowable stress
versus the fan rotational speed N).

The stress signature can be characterized as having two components:

a broadband level superimposed on which are a series of discrete narrow
speed band peaks. With the baseline configuration these discrete narrow
peaks correspond to integral numbers of blade vibration cycles per revolu-
tion (ViB/REV).

With the nonblowing inlet the 3, 4, and 5 vibration per rev. were of
a significant level. Of particular concern was the 4 vib. per rev. which
was near 100% of the allowable stress. However, with the 120° blowing

(Blg. P.R. of 1.4 ~ 5% of inlet mass flow) the blade stress peaks were
eradicated.

SUMMARY

The major effects of blowing on boundary layer control of a tilt-
nacelle V/STOL inlet are:

1. Angle-of-attack range increased.

2. Blade stresses significantly reduced.

3. Fan face distortion reduced.
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Figure 1. - Representative landing approach for tilt-narcelle VTOL
aircraft

ORIGINA-
OF POOR

PAGE &
o (10 1



BRSNS,

SRR S

INLET REQUIREMENTS

HIGH PRESSURE RECOVERY

LOW DISTORTION LEVELS
LOW BLADE STRESSES

SMOOTH THRUST VARIATIONS

Figure 2. - Inlet requirements.

e e e Eee s Oy gt aediie -



BRI - “‘F‘ll

]

BLOWING LINE g8 ’

WINDWARD PLANE

I
C-18-3112

Figure 3.- Mode! instaliation in 9x15 toot wind tunnel,

GE S
1’4 \‘m
RGTCE quUA
onF f& Q

i
B

@ R

e 4



INLET DETAILS AND INSTRUMENTATION
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Figure 4. - inlet details and instrumentation.
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Figure 5. - Diffuser separation bounds (effect of diffuser
blowing).




INLET ANGLE-OF -ATTACK, a, deg
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Figure 6. - iniet operating range.

TYPICAL INLET PERFORMANCE WITH BLOWING
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THROAT MACH NUMBER. M,
Figure 7. - Typical attachment/separation occurring with blowing.



EFFECT OF BLOWING ON INL@T PERFORNANCE
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Figure 8. - Effect of diffuser blowing on iniet performance.
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